The effects of polydispersity on the morphology of polystyrene-polyferrocenyldimethylsilane block copolymer thin films
[摘要] Introduction: As the size of electronic and magnetic devices decreases, nanoscale patterning becomes an increasingly important area of research. Two different approaches have been taken to pattern media: top-down methods such as lithography, and bottom-up methods such as self-assembly. Top-down assembly methods have the advantages of precision and accuracy, but are hard to scale for certain industrial applications due to their low throughput. Self-assembly methods are more easily scalable for applications requiring mass production. Thus, self-assembly has attracted attention and is an area of ongoing research for its potential to create high-throughput, periodic nanoscale patterns. Block copolymers are a class of commonly-studied materials for nanoscale selfassembly. Block copolymers are long molecules that consist of ;;blocks;; of chemically differing polymers attached end-to-end. Under the right conditions, these blocks will phase separate, spontaneously forming periodic microdomains. Diblock copolymers, which have only two blocks, have been found to form a variety of well-ordered morphologies with nanoscale periodicity ...
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]