The role of polymer flocculants in microfiltration of surface water
[摘要] Polymer flocculants, traditionally used with primary coagulant to enhance flocculation and sedimentation, are used in the coagulation-/microfiltration process as well assuming they can improve membrane performance similarly. However, there are several uncertainties concerning the use of polymer flocculants in the coagulation-microfiltration process. First, polymer flocculants may not have measurable effect on turbidity removal, because microfiltration membranes can remove significantly smaller particles than those removed by the conventional treatment process. Second, the effect of using polymer flocculants on NOM removal has been controversial. Although a number of studies reported improved NOM removal when polymers were used, others reported no or negative impact of polymers on NOM removal. Third, polymer flocculants are high molecular weight organic compounds. When carried over to membrane residual polymers can potentially foul the membranes. Finally, the use of polymer flocculants will change floc properties (i.e. size, fractal dimension, and stickiness) and subsequently bring uncertain effect on cake layer resistance. Therefore, the role of polymer flocculants in coagulation-microfiltration system needs to be carefully assessed for system optimization. In the reported research, three types of polymer flocculants with different charge and molecular weights were tested for comprehensively evaluating the impact of polymer flocculants on the performance of coagulation-microfiltration of surface water. Operation conditions such as inline filtration, direct filtration, and filtration with sedimentation were included. Two membrane reactors were designed to study the mechanism through which polymer flocculants affect the performance of coagulation-microfiltration systems. The result demonstrated that the use of polymer flocculants provides little to no benefit to turbidity and NOM removal in most cases, but pDADMACs can enhance NOM removal if applied properly; All polymer flocculants significantly increased membrane fouling except for pDADMACs when sedimentation proceeds MF; Polymer flocculants increase deposition/attachment of floc particles on the membrane surface through both adsorption of residual polymer on the membrane surface and polymer molecules on the floc particle surface; Even though polymers form larger and more fractal floc particles, they did not have notable impact on cake layer structure.
[发布日期] [发布机构] Rice University
[效力级别] sciences [学科分类]
[关键词] [时效性]