已收录 270281 条政策
 政策提纲
  • 暂无提纲
Investigation of the pool boiling heat transfer enhancement of nano-engineered fluids by means of high-speed infrared thermography
[摘要] (cont.) Critical heat flux enhancement in nanofluids of up to 100% was experimentally observed. The cause of this enhancement was determined to be the decreased static contact angle of nanofluid boiled surfaces. The increased wettability modified the growth of bubbles prior to CHF and promoted rewetting of hotspots at CHF. In parallel quenching tests, rewetting temperatures and velocities were simultaneously measured for the first time. Surfaces that had been pre-boiled in nanofluids were found to have significantly higher rewetting temperatures and velocities than clean surfaces. Interpretation of the experimental data was conducted with consideration of the governing surface parameters and existing models. It was found that there is significant room for improvement of most pool boiling models, especially with regard to surface effects. The research performed in this thesis help demonstrate the power of the infrared thermography technique and its potential for future improvement of boiling models.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:5      统一登录查看全文      激活码登录查看全文