A Design of Functional Layer with Robust Constitutive Parameters for Multilayer Metamaterials
[摘要] We propose a functional layer design with robust effective parameters for multilayer metamaterial. The functional layer is consisting of two identical dielectric material layers and one layer of metallic structures sandwiched in between. The symmetric design ensures that, following standard retrieval technique, effective parameters retrieved for a single functional layer in vacuum can be used to characterize its electromagnetic contribution when stacked in a multilayer system. When applied to the fishnet structures, effective parameters of the symmetric functional layer system show great robustness against the varying of the number of layers. The symmetric functional layer design is also investigated on multilayer metamaterials consisting of several layers of different kinds of metallic structures. Transmission and reflection spectra are obtained for real structures and their effective models by finite-differential-time-domain simulation and transfer matrix method calculation, respectively. It turns out that the effective model shows great equivalency to the real structures, and the effective parameters of symmetric functional layer design are robust at both normal and oblique incident cases. Our work provides a practical approach to design and characterize multilayer metamaterials with the well-known effective parameters retrieval technique.
[发布日期] [发布机构]
[效力级别] [学科分类] 材料工程
[关键词] [时效性]