Performance Evaluation of Azimuth Offset Method for Mitigating the Ionospheric Effect on SAR Interferometry
[摘要] Synthetic aperture radar (SAR) signals interact with the ionosphere layer when they propagate through the atmosphere, leading to the phase delay error for SAR interferometry (InSAR). To mitigate this error for SAR interferometry, azimuth offset method is proposed. However, the performance of it has not been fully investigated. In this situation, this study makes a comprehensive performance analysis of azimuth offset method through processing the simulated and real SAR data. The experimental result indicates that this method can effectively mitigate the ionospheric phase delay error, where the standard deviation of phase difference after correction (2.6?rad.) decreased by almost 2 times, compared to those before correction (5.3?rad.) for the real SAR data. However, it is also found that the method is affected by the random noise, which may induce the improper estimation of integral constants and consequently affect the ionospheric correction. Moreover, the severe deformation signals in the interferogram may lead to the estimation error of integral constants and scaling factor. Therefore, it should mask out the deformation signals when using the azimuth offsets method to correct the ionospheric error. This study may provide useful information when using azimuth offset method to mitigate the ionospheric phase delay error on InSAR.
[发布日期] [发布机构]
[效力级别] [学科分类] 自动化工程
[关键词] [时效性]