Improved 3-D Models of Seismic Velocity and Density for the Island of Hawaii:Implications for Volcano-tectonics
[摘要] Improved 3-D models of P-wave velocity and density are presented for better understanding of volcano-tectonic processes around the Island of Hawaii. The summit and upper rift zones of Kilauea are underlain by high-velocity and positive-density anomalies, indicative of magma intrusives dominated by dikes and melt-rich olivine cumulates. Seismicity is clustered at the seaward edge of this body, indicating that the cumulate body pushes the flank outward above a frictional decollement. The intrusive rocks along Kilauea's and Mauna Loa's rift zones are not continuous along their lengths, suggesting that eruptions along the lower rift zones could be fed vertically from the mantle, rather than downrift from the summit reservoirs. Mauna Loa's southeast flank is underlain by an anomalously large volume of intrusive materials that lacks the distinctive positive density anomaly observed above active rift zones. Therefore, this cumulate body is probably now cold and solidified, representing an ancient rift zone. Similar to Kilauea, earthquakes are concentrated along the boundary of this body, but here accommodate seaward motion of the adjacent flank rather than the cumulate body. Mauna Loa also appears to have a buried northwest rift zone, overlying the older flanks of Hualalai and Mauna Kea. Both Hualalai and Mauna Kea show south trending high-velocity and density features, also indicative of buried rift zones. High- and low-velocity anomalies beneath Loihi seamount are interpreted to indicate the presence of intrusive cumulates within the volcanic edifice and oceanic crust, and partial melt within the upper mantle, respectively. Low velocities beneath the Hilina and Kao'iki fault zones are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. In contrast, the submarine outer bench of Kilauea is marked by anomalously high-velocity materials, possibly evidence for a buried seamount that may impede outward spreading of the flank today.
[发布日期] [发布机构] Rice University
[效力级别] Geophysics [学科分类]
[关键词] [时效性]