已收录 273081 条政策
 政策提纲
  • 暂无提纲
Pattern search algorithms for mixed variable general constrained optimization problems
[摘要] A new class of algorithms for solving nonlinearly constrained mixed variable optimization problems is presented. The Audet-Dennis Generalized Pattern Search (GPS) algorithm for bound constrained mixed variable optimization problems is extended to problems with general nonlinear constraints by incorporating a filter, in which new iterates are accepted whenever they decrease the incumbent objective function value or constraint violation function value. Additionally, the algorithm can exploit any available derivative information (or rough approximation thereof) to speed convergence without sacrificing the flexibility often employed by GPS methods to find better local optima. In generalizing existing GPS algorithms, the new theoretical convergence results presented here reduce seamlessly to existing results for more specific classes of problems. While no local continuity or smoothness assumptions are made, a hierarchy of theoretical convergence results is given, in which the assumptions dictate what can be proved about certain limit points of the algorithm. A new Matlab(c)software package was developed to implement these algorithms. Numerical results are provided for several nonlinear optimization problems from the CUTE test set, as well as a difficult nonlinearly constrained mixed variable optimization problem in the design of a load-bearing thermal insulation system used in cryogenic applications.
[发布日期]  [发布机构] Rice University
[效力级别] Engineering [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文