已收录 273455 条政策
 政策提纲
  • 暂无提纲
A Highly Parallel and Scalable Motion Estimation Algorithm with GPU for HEVC
[摘要] We propose a highly parallel and scalable motion estimation algorithm, named multilevel resolution motion estimation (MLRME for short), by combining the advantages of local full search and downsampling. By subsampling a video frame, a large amount of computation is saved. While using the local full-search method, it can exploit massive parallelism and make full use of the powerful modern many-core accelerators, such as GPU and Intel Xeon Phi. We implanted the proposed MLRME into HM12.0, and the experimental results showed that the encoding quality of the MLRME method is close to that of the fast motion estimation in HEVC, which declines by less than 1.5%. We also implemented the MLRME with CUDA, which obtained 30–60x speed-up compared to the serial algorithm on single CPU. Specifically, the parallel implementation of MLRME on a GTX 460 GPU can meet the real-time coding requirement with about 25?fps for the 2560×1600 video format, while, for 832×480, the performance is more than 100?fps.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 软件
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文