Translucency and the perception of shape
[摘要] Previous studies have shown that the perceived three-dimensional (3D) shape of objects depends on their material composition. The majority of this work has focused on glossy, flat-matte, or velvety materials. Here, we studied perceived 3D shape of translucent materials. We manipulated the spatial frequency of surface relief perturbations of translucent and opaque objects. Observers indicated which of two surfaces appeared to have more bumps. They also judged local surface orientation using gauge probe figures. We found that translucent surfaces appeared to have fewer bumps than opaque surfaces with the same 3D shape (Experiment 1), particularly when self-occluding contours were hidden from view (Experiment 2). We also found that perceived local curvature was underestimated for translucent objects relative to opaque objects, and that estimates of perceived local surface orientation were similarly correlated with luminance for images of both opaque and translucent objects (Experiment 3). These findings suggest that the perceived mesoscopic shape of completely matte translucent objects can be underestimated due to a decline in the steepness of luminance gradients relative to those of opaque objects.
[发布日期] [发布机构]
[效力级别] [学科分类] 眼科学
[关键词] form perception;perception;noise;luminance;shape [时效性]