已收录 273616 条政策
 政策提纲
  • 暂无提纲
Randomized Social Choice Functions Under Metric Preferences
[摘要] We determine the quality of randomized social choice algorithms in a setting in which the agents have metric preferences every agent has a cost for each alternative, and these costs form a metric. We assume that these costs are unknown to the algorithms (and possibly even to the agents themselves), which means we cannot simply select the optimal alternative, i.e. the alternative that minimizes the total agent cost (or median agent cost). However, we do assume that the agents know their ordinal preferences that are induced by the metric space. We examine randomized social choice functions that require only this ordinal information and select an alternative that is good in expectation with respect to the costs from the metric. To quantify how good a randomized social choice function is, we bound the distortion, which is the worst-case ratio between the expected cost of the alternative selected and the cost of the optimal alternative. We provide new distortion bounds for a variety of randomized algorithms, for both general metrics and for important special cases. Our results show a sizable improvement in distortion over deterministic algorithms.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 人工智能
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文