已收录 270995 条政策
 政策提纲
  • 暂无提纲
Fe3O4@SiO2@ADMPT/H6P2W18O62: a novel Wells–Dawson heteropolyacid-based magnetic inorganic–organic nanohybrid material as potent Lewis acid catalyst for the efficient synthesis of 1,4-dihydopyridines
[摘要] A novel Wells–Dawson heteropolyacid-based magnetic Inorganic–organic nanohybrid, Fe3O4@SiO2@ADMPT/H6P2W18O62, was fabricated and used as a green, efficient, eco-friendly, and highly recyclable catalyst for the one-pot and multi-component synthesis of 1,4-Dihydopyridine (1,4-DHP) derivatives from the reaction of various aromatic aldehydes with ethyl acetoacetate and ammonium acetate with good to excellent yields and in a short span of time. The nanohybrid catalyst was prepared by the chemical anchoring of Wells–Dawson heteropolyacid H6P2W18O62 onto the surface of functionalized Fe3O4 nanoparticles with 2,4-bis(3,5-dimethylpyrazol)-triazine (ADMPT) linker. These nanocatalysts were identified by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and vibrating sample magnetometer (VSM). This protocol is developed as a safe, cost-effective and convenient alternate method for the synthesis of 1,4-DHP derivatives utilizing...
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 化学(综合)
[关键词] Wells–Dawson heteropolyacid;eco-friendly catalyst;1;4-dihydopyridine;Hantzsch reaction;fe3O4 nanoparticles;green chemistry [时效性] 
   浏览次数:15      统一登录查看全文      激活码登录查看全文