已收录 273081 条政策
 政策提纲
  • 暂无提纲
Evaluation of the thermal-hydraulic operating limits of the HEU-LEU transition cores for the MIT Research Reactor
[摘要] The MIT Research Reactor (MITR) is in the process of conducting a design study to convert from High Enrichment Uranium (HEU) fuel to Low Enrichment Uranium (LEU) fuel. The currently selected LEU fuel design contains 18 plates per element, compared to the existing HEU design of 15 plates per element. A transitional conversion strategy, which consists of replacing three HEU elements with fresh LEU fuel elements in each fuel cycle, is proposed. The objective of this thesis is to analyze the thermo-hydraulic safety margins and to determine the operating power limits of the MITR for each mixed core configuration. The analysis was performed using PLTEMP/ANL ver 3.5, a program that was developed for thermo-hydraulic calculations of research reactors. Two correlations were used to model the friction pressure drop and enhanced heat transfer of the finned fuel plates: the Carnavos correlation for friction factor and heat transfer, and the Wong Correlation for friction factor with a constant heat transfer enhancement factor of 1.9. With these correlations, the minimum onset of nucleate boiling (ONB) margins of the hottest fuel plates were evaluated in nine different core configurations, the HEU core, the LEU core and seven mixed cores that consist of both HEU and LEU elements. The maximum radial power peaking factors were assumed at 2.0 for HEU and 1.76 for LEU in all the analyzed core configurations. The calculated results indicate that the HEU fuel elements yielded lower ONB margins than LEU fuel elements in all mixed core configurations. In addition to full coolant channels, side channels next to the support plates that form side coolant channels were analyzed and found to be more limiting due to higher flow resistance. The maximum operating powers during the HEU to LEU transition were determined by maintaining the minimum ONB margin corresponding to the homogeneous HEU core at 6 MW. The recommended steady-state power is 5.8 MW for all transitional cores if the maximum radial peaking is adjacent to a full coolant channel and 4.9 MW if the maximum radial peaking is adjacent to a side coolant channel.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:6      统一登录查看全文      激活码登录查看全文