Stein's method for comparison of univariate distributions
[摘要] We propose a new general version of Stein’s method for univariate distributions. In particular we propose a canonical definition of the Stein operator of a probability distribution which is based on a linear difference or differential-type operator. The resulting Stein identity highlights the unifying theme behind the literature on Stein’s method (both for continuous and discrete distributions). Viewing the Stein operator as an operator acting on pairs of functions, we provide an extensive toolkit for distributional comparisons. Several abstract approximation theorems are provided. Our approach is illustrated for comparison of several pairs of distributions: normal vs normal, sums of independent Rademacher vs normal, normal vs Student, and maximum of random variables vs exponential, Fréchet and Gumbel.
[发布日期] [发布机构]
[效力级别] [学科分类] 统计和概率
[关键词] Density approach, Stein’s method, comparison of distributions. [时效性]