Exploratory data analysis for preemptive quality control
[摘要] In this thesis, I proposed and implemented a methodology to perform preemptive quality control on low-tech industrial processes with abundant process data. This involves a 4 stage process which includes understanding the process, interpreting and linking the available process parameter and quality control data, developing an exploratory data toolset and presenting the findings in a visual and easily implementable fashion. In particular, the exploratory data techniques used rely on visual human pattern recognition through data projection and machine learning techniques for clustering. The presentation of finding is achieved via software that visualizes high dimensional data with Chernoff faces. Performance is tested on both simulated and real industry data. The data obtained from a company was not suitable, but suggestions on how to collect suitable data was given.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]