已收录 273081 条政策
 政策提纲
  • 暂无提纲
Contrast-phase Imaging of Fixed-Cells through Micro-Cavity Scanning Microscopy
[摘要] Contrast phase imaging at infrared wavelengths is achieved through an extrinsic Fabry-Perot cavity in optical fiber. The micro-cavity is realized by approaching a cleaved fiber to a distance of about few tens of microns from the surface under test. The probe is a single mode fiber and is fed by a low-coherence source. The information is extracted from the reflected spectrum, that starts to be modulated by the interference when the fiber begins to interact with the sample. The measurement of the reflected optical intensity provides a map of the sample reflectivity, whereas from the analysis of the spectrum in the time/spatial domain, it is possible to extract topography and refractive index variations. This information is entangled in the contrast phase image obtained. In this work we review the system proposed in [19] in order to extract topography and local surface permittivity of biological samples. The system displays tridimensional images with a transverse resolution that is not limited by the numerical aperture NA of the scanning probe (as suggested by the Rayleigh limit), but it is related to the transverse field behavior of the electromagnetic field inside the micro-cavity. Differently, the source bandwidth, demodulation algorithm and optical spectrum analyzer resolution affect the resolution in the normal direction.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 电子、光学、磁材料
[关键词] scanning microscopy;micro-cavity;lowcoherence interferometry [时效性] 
   浏览次数:19      统一登录查看全文      激活码登录查看全文