已收录 273176 条政策
 政策提纲
  • 暂无提纲
Nitric Oxide and ATP-Sensitive Potassium Channels Mediate Lipopolysaccharide-Induced Depression of Central Respiratory-Like Activity in Brain Slices
[摘要] Infection may result in early abnormalities in respiratory movement, and the mechanism may involve central and peripheral factors. Peripheral mechanisms include lung injury and alterations in electrolytes and body temperature, but the central mechanisms remain unclear. In the present study, brainstem slices harvested from rats were stimulated with lipopolysaccharide at different doses. Central respiratory activities as demonstrated by electrophysiological activity of the hypoglossal rootlets were examined and the mechanisms were investigated by inhibiting nitric oxide synthase and ATP-sensitive potassium channels. As a result, 0.5 µg/ml lipopolysaccharide mainly caused inhibitory responses in both the frequency and the output intensity, while 5 µg/ml lipopolysaccharide caused an early frequency increase followed by delayed decreases in both the frequency and the output intensity. At both concentrations the inhibitory responses were fully reversed by inhibition of nitric oxide synthase with Nω-nitro-L-arginine methyl ester hydrochloride (20 µM), and by inhibition of ATP- sensitive potassium channels with glybenclamide (100 µM). These results show that direct lipopolysaccharide challenge altered central respiratory activity in dose- and time- related manners. Nitric oxide synthase and ATP-sensitive potassium channels may be involved in the respiratory changes.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 神经科学
[关键词] Respiratory activity;Lipopolysaccharide;Nitric oxide;ATP-sensitive potassium channels [时效性] 
   浏览次数:8      统一登录查看全文      激活码登录查看全文