已收录 273502 条政策
 政策提纲
  • 暂无提纲
Miniaturized load sensor using quartz crystal resonator constructed through microfabrication and bonding
[摘要] Highly sensitive, wide-measurement-range compact load sensors are desirable for various applications, including measurement of biosignals, manipulation and stiffness measurement of cells, and so on. Conventional load sensors are highly sensitive but have relatively small measurement ranges. A load sensor using an AT-cut quartz crystal resonator (QCR) has superior characteristics such as, high accuracy, improved strength under compressive stress, long-term stability, and compact size. However, a retention mechanism is required to firmly support the QCR because the QCR is easily broken by stretching and bending motions. Conventional machining processes are not suitable for further miniaturization of the sensor. Even if the retention mechanism were miniaturized, the assembly process is complicated. In this paper, we propose a novel design and fabrication method for a load sensor using the QCR. Using microfabrication and bonding, the assembly process was simplified. We demonstrate the feasibility of a miniaturized QCR load sensor whose volume is 24.6 mm3 (width is 4 mm, height is 5.6 mm, depth is 1.1 mm). The experimental results showed that the nonlinearity and hysteresis were 0.94% F.S. and 1.68% F.S., respectively. Additionally, sensitivity of the sensor was 1458 Hz/N. We improved the sensitivity and stability of the sensor; the fluctuation was 0.04 mN over a period of 1 min. Moreover, the effects of the temperature change were evaluated. The temperature and the sensor output were linear within the range of 20°C–50°C.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 人工智能
[关键词] Quartz crystal resonator;Load sensor;Microfabrication [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文