已收录 273208 条政策
 政策提纲
  • 暂无提纲
Fast human detection with cascaded ensembles
[摘要] (cont.) In this thesis, we combine the two proposed methods and investigate the feasibility of a fast person localization framework that integrates the cascade-of-rejectors approach with the Histograms of Oriented Gradients (HoG) features on a data parallel architecture. The salient features of people are captured by HoG blocks of variable sizes and locations which are chosen by the AdaBoost algorithm from a large set of possible blocks. We use the integral image representation for histogram computation and a rejection cascade in a sliding-windows manner, both of which can be implemented in a data parallel fashion. Utilizing the NVIDIA CUDA framework to realize this method on a Graphics Processing Unit (GPU), we report a speed up by a factor of 13 over our CPU implementation. For a 1280x960 image our parallel technique attains a processing speed of 2.5 to 8 frames per second depending on the image scanning density, with a detection quality comparable to the original HoG algorithm.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文