An inverted hydride-fueled pressurized water reactor concept
[摘要] (cont.) Conclusions on the competitiveness, from the attainable power viewpoint, of this IPWR design against typical pin geometry PWRs depend on the IPWR considered (maximum powered, but provided with a very small web thickness, or a ;;selected design;;, having lower power but larger fuel web thickness) and on the PWR relative to which the comparison is performed (maximum powered, but with thin 6.5 mm OD fuel rods, or reference geometry 9.5 mm OD rods). If the maximum powered IPWR is considered, maximum power gains are of 13% and 48% with respect to the maximum powered PWR and to the reference PWR respectively. If the selected IPWR design is considered, no power gain is possible relative to the maximum powered PWR, while a power gain of 19% is achievable relative to the reference PWR. A comprehensive analysis, including LBLOCA modeling and neutronics, was performed on the selected IPWR design. This reactor was demonstrated to be able to deliver a thermal power of 4078 MW, corresponding to a 19% gain with respect to the reference PWR analyzed with the same pressure drop limit. Power density and specific power are 119 MW/m3 and 73.6 kW/kgHM respectively. Required fuel enrichment to achieve a 17.2 month fuel cycle is 15%. Although a net power gain was demonstrated, the economic competitiveness of the IPWR concept is penalized by the higher enrichment required and, eventually, by higher manufacture costs of the inverted assemblies relative to pin assemblies. A complete economic analysis, not performed in this work, would be needed to assess the benefits of the IPWR design.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]