已收录 273455 条政策
 政策提纲
  • 暂无提纲
Understanding new regimes for light-matter interactions
[摘要] This thesis focuses on achieving new understanding of the principles and phenomena involved in the interaction of light with a variety of complicated material systems, including biomaterials and nanostructured materials. We will show that bone piezoelectricity may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects, and may play a role in blast-induced traumatic brain injury. We will also shed new light on the localization of photons in a variety of complex microstructured waveguides. We will reveal the principles behind the design of single-polarization waveguides, including design strategies that did not seem to have been considered previously. Finally, we designed a 3D photonic crystal slab structure to exhibit negative-index behavior at visible wavelengths, which was fabricated and experimentally demonstrated by our collaborators to show negative refraction with, to our knowledge, the lowest loss at visible wavelengths to date.
[发布日期]  [发布机构] Massachusetts Institute of Technology
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文