Morphology and mechanical properties of electrospun polymeric fibers and their nonwoven fabrics
[摘要] (cont.) Secondly, we studied the size effects of single electrospun fibers on their stiffness and strength. The Young;;s modulus and yield strength of individual electrospun fibers of amorphous poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) have been obtained in uniaxial extension. The Young;;s modulus is found to exhibit values in excess of the isotropic bulk value, and to increase with decreasing fiber diameter for fibers with diameter less than roughly 500 nm. The yield stress is also found to increase with decreasing fiber diameter. These trends are shown to correlate with increasing molecular level orientation within the fibers with decreasing fiber diameter. Using Ward;;s aggregate model, the correlation between molecular orientation and fiber modulus can be explained, and reasonable determinations of the elastic constants of the molecular unit are obtained. Finally, we identified a relation of stiffness between single electrospun fibers and their nonwoven fabrics. This is of interest because adequate mechanical integrity of nonwoven fabrics is generally a prerequisite for their practical usage. The Young;;s modulus of electrospun PA 6(3)T nonwoven fabrics were investigated as a function of the diameter of fibers that constitute the fabric. Two quantitative microstructure-based models that relate the Young;;s modulus of these fabrics to that of the fibers are considered, one assuming straight fibers and the other allowing for sinuous fibers. This study is particularly important for meshes comprising fibers because of our recent discovery of an enhanced size effect on their Young;;s modulus as well as the tendency towards a curved fiber topology between fiber junctions. The governing factors that affect the mechanical properties of nonwoven mats are the fiber network, fiber curvature, intrinsic fiber properties, and fiber-fiber junctions. Especially for small fibers, both the intrinsic fiber properties and fiber curvature dominate the mechanical behavior of their nonwoven fabrics. This thesis helps us to understand the mechanism behind the enhanced mechanical behavior of small fibers, and to identify determining parameters that can be used to tailor their mechanical performance.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]