已收录 272983 条政策
 政策提纲
  • 暂无提纲
Improving Bayesian Reasoning: What Works and Why
[摘要] We confess that the first part of our title is somewhat of a misnomer. Bayesian reasoning is a normative approach to probabilistic belief revision and, as such, it is in need of no improvement. Rather, it is the typical individual whose reasoning and judgments often fall short of the Bayesian ideal who is the focus of improvement. What have we learnt from over a half-century of research and theory on this topic that could explain why people are often non-Bayesian Can Bayesian reasoning be facilitated, and if so why These are the questions that motivate this Frontiers in Psychology Research Topic. Bayes' theorem, named after English statistician, philosopher, and Presbyterian minister, Thomas Bayes, offers a method for updating one��s prior probability of an hypothesis H on the basis of new data D such that P(H|D) = P(D|H)P(H)/P(D). The first wave of psychological research, pioneered by Ward Edwards, revealed that people were overly conservative in updating their posterior probabilities (i.e., P(D|H)). A second wave, spearheaded by Daniel Kahneman and Amos Tversky, showed that people often ignored prior probabilities or base rates, where the priors had a frequentist interpretation, and hence were not Bayesians at all. In the 1990s, a third wave of research spurred by Leda Cosmides and John Tooby and by Gerd Gigerenzer and Ulrich Hoffrage showed that people can reason more like a Bayesian if only the information provided takes the form of (non-relativized) natural frequencies. Although Kahneman and Tversky had already noted the advantages of frequency representations, it was the third wave scholars who pushed the prescriptive agenda, arguing that there are feasible and effective methods for improving belief revision. Most scholars now agree that natural frequency representations do facilitate Bayesian reasoning. However, they do not agree on why this is so. The original third wave scholars favor an evolutionary account that posits human brain adaptation to natural frequency processing. But almost as soon as this view was proposed, other scholars challenged it, arguing that such evolutionary assumptions were not needed. The dominant opposing view has been that the benefit of natural frequencies is mainly due to the fact that such representations make the nested set relations perfectly transparent. Thus, people can more easily see what information they need to focus on and how to simply combine it. This Research Topic aims to take stock of where we are at present. Are we in a proto-fourth wave If so, does it offer a synthesis of recent theoretical disagreements The second part of the title orients the reader to the two main subtopics: what works and why In terms of the first subtopic, we seek contributions that advance understanding of how to improve people��s abilities to revise their beliefs and to integrate probabilistic information effectively. The second subtopic centers on explaining why methods that improve non-Bayesian reasoning work as well as they do. In addressing that issue, we welcome both critical analyses of existing theories as well as fresh perspectives. For both subtopics, we welcome the full range of manuscript types.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 心理学(综合)
[关键词] Bayesian reasoning;belief revision;Risk Communication;subjective probability;human judgment;psychological methods;individual differences;Bayesianism;probabilistic judgment [时效性] 
   浏览次数:180      统一登录查看全文      激活码登录查看全文