Nanocrystalline alloys : enhanced strengthening mechanisms and mechanically-driven structural evolution
[摘要] Nanocrystalline materials have experienced a great deal of attention in recent years, largely due to their impressive array of physical properties. In particular, nanocrystalline mechanical behavior has been of interest, as incredible strengths are predicted when grain size is reduced to the nanometer range. The vast majority of research to this point has focused on quantifying and understanding the grain size-dependence of strength, leading to the discovery of novel, grain boundary-dominated physics that begin to control deformation at extremely fine grain sizes. With the emergence of this detailed understanding of nanocrystalline deformation mechanisms, the opportunity now exists for studies that explore how other structural features affect mechanical properties in order to identify alternative strengthening mechanisms. In this thesis, we seek to extend our current knowledge of nanocrystalline structure-property relationships beyond just grain size, using combinations of structural characterization, mechanical testing, and atomistic simulations. Controlled experiments on Ni-W are first used to show that solid solution addition and the relaxation of nonequilibrium grain boundary state can dramatically affect the strength of nanocrystalline metals. Next, the sliding wear response of nanocrystalline Ni-W is investigated, to show how alloying and grain boundary structural state affect a more complex mechanical property. This type of mechanical loading also provides a strong driving force for structural evolution, which, in this case, is found to be beneficial. Mechanically-driven grain growth and grain boundary relaxation occur near the surface of the Ni-W samples during sliding, leading to a hardening effect that improves wear resistance and results in a deviation from Archard scaling. Finally, molecular dynamics simulations are performed to confirm that mechanical cycling alone can indeed relax grain boundary structure and strengthen nanocrystalline materials. In all of the cases discuss above, our observations can be directly connected to the unique deformation physics of nanocrystalline materials.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]