已收录 272983 条政策
 政策提纲
  • 暂无提纲
Long Signaling Cascades Tend to Attenuate Retroactivity
[摘要] Signaling pathways consisting of phosphorylation/dephosphorylation cycles with no explicit feedback allow signals to propagate not only from upstream to downstream but also from downstream to upstream due to retroactivity at the interconnection between phosphorylation/dephosphorylation cycles. However, the extent to which a downstream perturbation can propagate upstream in a signaling cascade and the parameters that affect this propagation are presently unknown. Here, we determine the downstream-to-upstream steady-state gain at each stage of the signaling cascade as a function of the cascade parameters. This gain can be made smaller than 1 (attenuation) by sufficiently fast kinase rates compared to the phosphatase rates and/or by sufficiently large Michaelis-Menten constants and sufficiently low amounts of total stage protein. Numerical studies performed on sets of biologically relevant parameters indicated that ~50% of these parameters could give rise to amplification of the downstream perturbation at some stage in a three-stage cascade. In an n-stage cascade, the percentage of parameters that lead to an overall attenuation from the last stage to the first stage monotonically increases with the cascade length n and reaches 100% for cascades of length at least 6.
[发布日期]  [发布机构] Elsevier
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:3      统一登录查看全文      激活码登录查看全文