已收录 272643 条政策
 政策提纲
  • 暂无提纲
EGOROV'S THEOREM FOR A DIFFRACTIVE BOUNDARY PROBLEM
[摘要] Let (TRIANGLE) be the Laplacian on R(;;n)(FDIAG)K with Dirichlet boundary conditions. Assume K is smoothly bounded with strictly convex boundary. By the spectral theorem define e(;;itSQRT.(-)(TRIANGLE)(;; )and extend this operator to ;;(R(;;n)(FDIAG)K). Theorem. Let P (epsilon) OPS(;;m)(R(;;n)(FDIAG)K). Suppose the distribution kernel for P is compactly supported in R(;;n)(FDIAG)K X R(;;n)(FDIAG)K(xi), and (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) Then modulo a smoothing operator (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) for any 1/2 0.
[发布日期]  [发布机构] Rice University
[效力级别]  [学科分类] 
[关键词]  [时效性] 
   浏览次数:2      统一登录查看全文      激活码登录查看全文