Dynamic order allocation for make-to-order manufacturing networks : an industrial case study of optimization under uncertainty/
[摘要] Planning and controlling production in a large make-to-order manufacturing network poses complex and costly operational problems. As customers continually submit customized orders, a centralized decision-maker must quickly allocate each order to production facilities with limited but flexible labor, production capacity, and parts availability. In collaboration with a major desktop manufacturing firm, we study these relatively unexplored problems, the firm;;s solutions to it, and alternate approaches based on mathematical optimization. We develop and analyze three distinct models for these problems which incorporate the firm;;s data, testing, and feedback, emphasizing realism and usability. The problem is cast as a Dynamic Program with a detailed model of demand uncertainty. Decisions include planning production over time, from a few hours to a quarter year, and determining the appropriate amount of labor at each factory. The objective is to minimize shipping and labor costs while providing superb customer service by producing orders on-time. Because the stochastic Dynamic Program is too difficult to solve directly, we propose deterministic, rolling-horizon, Mixed Integer Linear Programs, including one that uses recently developed affinely-adjustable Robust Optimization techniques, that can be solved in a few minutes. Simulations and a perfect hindsight upper bound show that they can be near-optimal. Consistent results indicate that these solutions offer several hundred thousand dollars in daily cost saving opportunities by accounting for future demand and repeatedly re-balancing factory loads via re-allocating orders, improving capacity utilization, and improving on-time delivery.
[发布日期] [发布机构] Massachusetts Institute of Technology
[效力级别] [学科分类]
[关键词] [时效性]