已收录 273227 条政策
 政策提纲
  • 暂无提纲
Making Nanostructured Pyrotechnics in a Beaker.
[摘要] Controlling composition at the nanometer scale is well known to alter material properties in sometimes highly desirable and dramatic ways. In the field of energetic materials component distributions, particle size, and morphology, effect both sensitivity and reactivity performance. To date nanostructured energetic materials are largely unknowns with the exception of nanometer-sized reactive powders now being produced at a number of laboratories. We have invented a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. The ease of this synthetic approach along with the inexpensive, stable, and benign nature of the metal precursors and solvents permit large-scale syntheses to be carried out. This approach can be accomplished using low cost processing methods. We will describe here, for the first time, this new synthetic route for producing metal-oxide-based pyrotechnics. The procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis is straightforward and involves the dissolution the metal salt in a solvent followed by the addition of an epoxide, which induces gel formation in a timely manner. Experimental evidence suggests that the epoxide acts as an irreversible proton scavenger that induces the hydrated-metal species to undergo hydrolysis and condensation to form a sol that undergoes. further condensation to form a metal-oxide nanostructured gel. Both critical point and atmospheric drying have been employed to produce monolithic aerogels and xerogels, respectively.
[发布日期]  [发布机构] Technical Information Center Oak Ridge Tennessee
[效力级别]  [学科分类] 工程和技术(综合)
[关键词] Pyrotechnics;Spectroscopy;Particle size;Polymers;Nanostructures [时效性] 
   浏览次数:13      统一登录查看全文      激活码登录查看全文