Two-Parameter Failure Model Improves Time-Independent and Time-Dependent Failure Predictions.
[摘要] A new analytical model for predicting failure under a generalized, triaxial stress state was developed by the author and initially reported in 1984. The model was validated for predicting failure under elevated-temperature creep-rupture conditions. Biaxial data for three alloy steels, Types 304 and 316 stainless steels and Inconel 600, demonstrated two to three orders of magnitude reduction in the scatter of predicted versus observed creep-rupture times as compared to the classical failure models of Mises, Tresca, and Rankine. In 1990, the new model was incorporated into American Society of Mechanical Engineers (ASME) Code Case N47-29 for design of components operating under creep-rupture conditions. The current report provides additional validation of the model for predicting failure under time-independent conditions and also outlines a methodology for predicting failure under cyclic, time-dependent, creep-fatigue conditions.
[发布日期] [发布机构] Technical Information Center Oak Ridge Tennessee
[效力级别] [学科分类] 工程和技术(综合)
[关键词] Stainless steels;Engines;Alloys;Inconel 600;Stainless steel 304 [时效性]