An Ensemble Machine Learning Approach to Understanding the Effect of a Global Pandemic on Twitter Users’ Attitudes
[摘要] It is thought that the COVID-19 outbreak has significantly fuelled racism and discrimination, especially towards Asian individuals[10]. In order to test this hypothesis, in this paper, we build upon existing work in order to classify racist tweets before and after COVID-19 was declared a global pandemic. To overcome the difficult linguistic and unbalanced nature of the classification task, we combine an ensemble of machine learning techniques such as a Linear Support Vector Classifiers, Logistic Regression models, and Deep Neural Networks. We fill the gap in existing literature by (1) using a combined Machine Learning approach to understand the effect of COVID-19 on Twitter users’ attitudes and by (2) improving on the performance of automatic racism detectors. Here we show that there has not been a sharp increase in racism towards Asian people on Twitter and that users that posted racist Tweets before the pandemic are prone to post an approximately equal amount during the outbreak. Previous research on racism and other virus outbreaks suggests that racism towards communities associated with the region of the origin of the virus is not exclusively attributed to the outbreak but rather it is a continued symptom of deep-rooted biases towards minorities[13]. Our research supports these previous findings. We conclude that the COVID-19 outbreak is an additional outlet to discriminate against Asian people, instead of it being the main cause.
[发布日期] [发布机构]
[效力级别] [学科分类] 计算机科学(综合)
[关键词] COVID-19;Coronavirus;Machine Learning;Natural Language Processing;Automatic Hate-Speech Detection;Racism. [时效性]