Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming
[摘要] In practical utilization of stratified random sampling scheme, the investigator meets a problem to select a sample that maximizes the precision of a finite population mean under cost constraint. An allocation of sample size becomes complicated when more than one characteristic is observed from each selected unit in a sample. In many real life situations, a linear cost function of a sample sizenhis not a good approximation to actual cost of sample survey when traveling cost between selected units in a stratum is significant. In this paper, sample allocation problem in multivariate stratified random sampling with proposed cost function is formulated in integer nonlinear multiobjective mathematical programming. A solution procedure is proposed using extended lexicographic goal programming approach. A numerical example is presented to illustrate the computational details and to compare the efficiency of proposed compromise allocation.
[发布日期] [发布机构]
[效力级别] [学科分类] 应用数学
[关键词] [时效性]