Sequence homology between the α-subunits of G-proteins and other GTP-binding proteins and certain regions within the nucleotide binding domains (NBDs) of cystic fibrosis transmembrane conductance regulator (CFTR) indicates that these protein structures may be similar. A sequence allignment of the NBDs of CFTR and NBDs from other membrane transporters, forms the basis of a structural model. This model predicts that one of the conserved sequences GGQR, within which a number of CF mutations occur, forms part of the nucleotide binding pocket and serves as an ON/OFF conformational switch as observed in GTP binding proteins. Furthermore, based on subtle sequence differences between the first and second NBDs of CFTR and from structure-activity data, we suggest that the nucleotide binding site environments of the two NBDs are different.