Intracellular calcium is a second messenger involved in several processes in yeast, such as mating, nutrient sensing, stress response and cell cycle events. It was reported that glucose addition stimulates a rapid increase in free calcium level in yeast. To investigate the calcium level variations induced by different stimuli we used a reporter system based on the photoprotein aequorin. Glucose addition (50 mM) to nutrient-starved cells induced an increase in free intracellular calcium concentration, mainly due to an influx from external medium. The increase of calcium reached its maximum 100–120 s after the stimulus. A concentration of about 20 mM glucose was required for a 50% increase in intracellular calcium. This response was completely abolished in strain plc1Δ and in the isogenic wild-type strain treated with 3-nitrocoumarin, a phosphatidylinositol-specific phospholipase C inhibitor, suggesting that Plc1p is essential for glucose-induced calcium increase. This suggests that Plc1p should have a significant role in transducing glucose signal. The calcium influx induced by addition of high glucose on cells previously stimulated with low glucose levels was inhibited in strains with a deletion in the GPR1 or GPA2 genes, which suggests that glucose would be detected through the Gpr1p/Gpa2p receptor/G protein-coupled (GPCR) complex. Moreover, the signal was completely abolished in a strain unable to phosphorylate glucose, which is consistent with the reported requirement of glucose phosphorylation for GPCR complex activation.