已收录 273594 条政策
 政策提纲
  • 暂无提纲
Delocalization and limiting spectral distribution of Erdős-Rényi graphs with constant expected degree
[摘要] For fixed $\lambda >0$, it is known that Erdős-Rényi graphs $\{G(n,\lambda /n),n\in \mathbb{N} \}$, with edge-weights $1/\sqrt{\lambda } $, have a limiting spectral distribution, $\nu _{\lambda }$. As $\lambda \to \infty $, $\{\nu _{\lambda }\}$ converges to the semicircle distribution. For large $\lambda $, we find an orthonormal eigenvector basis of $G(n,\lambda /n)$ where most of the eigenvectors have small infinity norms as $n\to \infty $, providing a variant of an eigenvector delocalization result of Tran, Vu, and Wang (2013).
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 统计和概率
[关键词] Erdős-Rényi random graph;semicircle law;delocalization [时效性] 
   浏览次数:18      统一登录查看全文      激活码登录查看全文