已收录 273186 条政策
 政策提纲
  • 暂无提纲
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification
[摘要] Transit amplification (TA), a state of combined, rapid proliferative expansion and differentiation of stem cell-descendants, remains poorly defined at the molecular level. The Polycomb Repressive Complex 1 (PRC1) protein BMI1 has been localized to TA compartments, yet its exact role in TA is unclear. PRC1 proteins control gene expression, cell proliferation and DNA-damage repair. Coordination of such DNA-templated activities during TA is predicted to be crucial to support DNA replication and differentiation-associated transcriptional programming. We here examined whether chondrogenesis provides a relevant biological context for synchronized coordination of these chromatin-based tasks by BMI1. Taking advantage of a prominently featuring TA-phase during chondrogenesis in vitro and in vivo, we here report that TA is completely dependent on intact PRC1 function. BMI1-depleted chondrogenic progenitors rapidly accumulate double strand DNA breaks during DNA replication, present massive non-H3K27me3-directed transcriptional deregulation and fail to undergo chondrogenic TA. Genome-wide accumulation of Topoisomerase 2α and Geminin suggests a model in which PRC1 synchronizes replication and transcription during rapid chondrogenic progenitor expansion. Our combined data reveals for the first time a vital cell-autonomous role for PRC1 during chondrogenesis. We provide evidence that chondrocyte hyper-replication and hypertrophy represent a unique example of programmed senescence in vivo. These findings provide new perspectives on PRC1 function in development and disease.
[发布日期]  [发布机构] 
[效力级别]  [学科分类] 分子生物学,细胞生物学和基因
[关键词] polycomb;topoisomerase;transit amplification;chromatin;DNA replication;transcription;chondrogenesis;differentiation;DNA damage;hypertrophy;senescence [时效性] 
   浏览次数:21      统一登录查看全文      激活码登录查看全文